

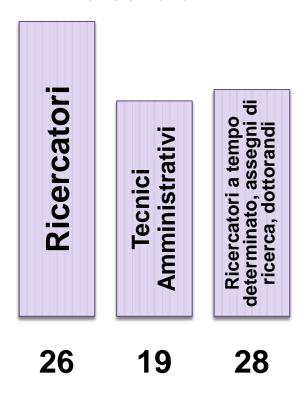
ISTEC E INNOVAZIONE

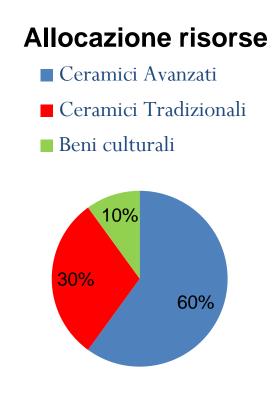
Istituto di Scienza e Tecnologia dei Materiali Ceramici Anna Luisa Costa

Via Granarolo, 64 – 48018 Faenza (RA) Strada delle Cacce, 73 – 10135 Torino (TO)

Tel.: +39 0546-699711 +39 011 3977230

Fax: +39 0546-699719
Sito web: <u>www.istec.cnr.it</u>




Director: Dr Alida Bellosi

ISTEC è un Istituto del Consiglio Nazionale delle Ricerche, l'unico specificamente indirizzato allo studio dei Materiali Ceramici, in senso globale.

Personale

Budget annuale : circa 3 milioni Euro

Attività di ISTEC-CNR

INNOVAZIONE

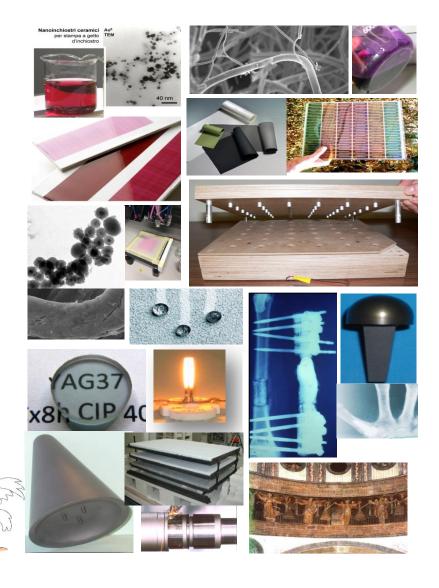
Settori applicativi

Edilizia/infrastrutture/ceramica tradizionale

Patrimonio artistico

Nuove Energie rinnovabili

Tutela dell'ambiente


Trasporti e aerospazio

Ingegneria Industriale

Medicina e salute

Sicurezza dei Nano

Formazione

- Attivazione di Dottorato in Scienza e Tecnologia dei Materiali in Convenzione con l'Università di Parma, da A.A 2013/2014
- Collaborazione con l'Università di Bologna per il CDL in "Chimica dei Materiali e Tecnologie Ceramiche", ospitato presso ISTEC
- Organizzazione di corsi post-laurea, master e seminari
- Collaborazione per tesi di laurea e di dottorato
- Training tecnico-aziendali

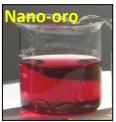
Materiali e ingegnerizzazione

Consiglio Nazionale delle Ricerche Istituto di Scienza e Tecnologia dei Materiali Ceramici

- Nanomateriali per rivestimenti intelligenti (super idro/oleofobicità, antibattericità, autopulenza da fotocatalisi).

 Inchiostri ceramici per tecnologia di decorazione digitale
 Nano particelle in dispositivi catalitici (sistemi di depurazione acqua/aria).
- Bioceramici e dispositivi per il Biomedicale (protesi, sostituti ossei, drug delivery...).
- Ceramici ultra-refrattari per applicazioni spaziali, industriali e nell'energia, materiali resistenti agli shock termici in ambienti estremi.
- Materiali per la produzione e accumulo dell'energia (celle a combustibile, fotovoltaico, batterie elettrochimiche, nanofluidi).
- 5 Materiali piezoelettrici (sistemi per recupero energetico, sensori, attuatori)
- Geopolimeri: ceramiche legate per via chimica (sistemi refrattari per isolamento acustico e termico, ottenuti con processo a basso impatto ambientale
- 7 Materiali per la conservazione e restauro di beni culturali

NANOMATERIALI E PROCESSI COLLOIDALI


OSSIDI

 TiO_2 , SnO_2 , Y_2O_3 , $YAIO_3$, Nd,Yb,Ce: Y₃Al₅O₁₂, ZrO₂

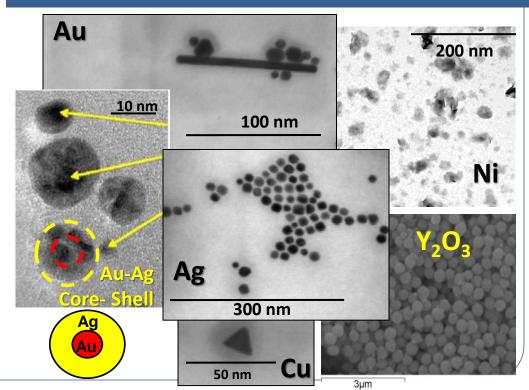
METALLI

Au⁰, Ag⁰, Cu⁰, Ni⁰ Au-Ag, Au-Cu, Ag-Cu

Nanopolvere

Sospensioni colloidali

APPLICAZIONI


Realizzazione di rivestimenti nanostrutturati attivi

Produzione di Pigmenti /Cariche **Inorganiche**

Impiego come catalizzatori eterogenei in sistemi di purificazione acqua

Utilizzo come nanofluidi per scambio termico

Nanoparticelle ingegnerizzate: Controllo di dimensione, forma, composizione

Responsabile scientifico: Dr.ssa **Mariarosa Raimondo** mariarosa.raimondo@istec.cnr.it

Brevetti ISTEC

Riferimento: RM2011A000104 (depositato in data 03/03/2011)

M. Raimondo, M. Blosi et al.

METODO PER IL TRATTAMENTO DI SUPERFICI CERAMICHE PER CONFERIRE ALLE STESSE UNA ELEVATA IDROFOBICITA' E OLEOFOBICITA'

Riferimento: RM2011A000291 (depositato in data 21/06/2012)

M. Raimondo, M. Blosi et al.

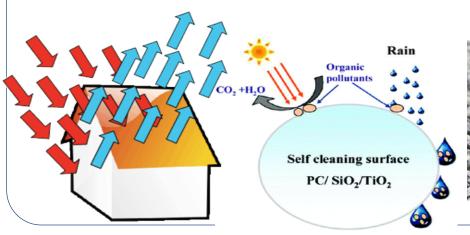
METODO PER IL TRATTAMENTO DI SUPERFICI METALLICHE PER CONFERIRE ALLE STESSE UNA ELEVATA IDROFOBICITA' E OLEOFOBICITA'

International PCT procedura in atto

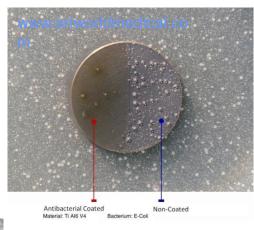
Proprietà autopulenti e fotocatalitiche

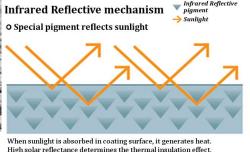
Superidrofilicità, superidrofobicità, decomposizione di inquinanti atmosferici (VOCs e NOx) in composti non nocivi che in presenza di pioggia vengono allontanati, anti-ghiaccio, etc

Proprietà termo e fotocromatiche

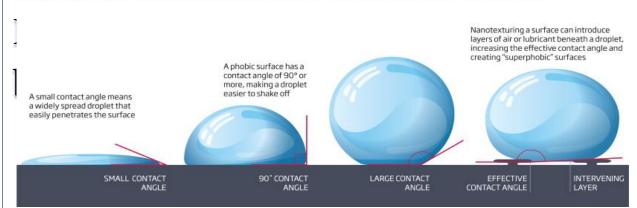

Conferite da nanopolveri e pigmenti termo-cromatici applicati in soluzione (sol-gel), effetti di cambiamento di colore con la temperatura e luminosità (effetto reversibile).

Proprietà antibatteriche e antivirali


Prevenzione e arresto dell'accrescimento di batteri/virus (Ag, Cu)


Proprietà meccaniche, resistenza all'usura

Trattamenti a base di ossidi ceramici nanometrici (Al₂O₃, ZrO₂), vetroceramici, etc



Superfici "self cleaning" o autopulenti

New angles on phobia

The contact angle is a measure of how a liquid droplet spreads when it hits a surface - and therefore how likely it is to penetrate it and make it wet

Ceramica self cleaning superidrofobica

COME PROGETTARLE?

- ✓ Microstruttura e rugosità
- ✓ Chimica della superficie
- ✓ Energia superficiale
- ✓ Adesione dei rivestimenti

ISTEC KNOW-HOW

- Processi e tecnologia per produrre materiali con rivestimenti super-idrofobici, oleofobici, autopulenti, anti-ghiaccio, con bassi coefficienti di attrito ad elevata resistenza e durabilità nel tempo
- 2. Possibilità di estendere questi rivestimenti ad altre superfici di interesse nel settore dell'edilizia e dei trasporti: metalli, superfici vetrose, legno.........

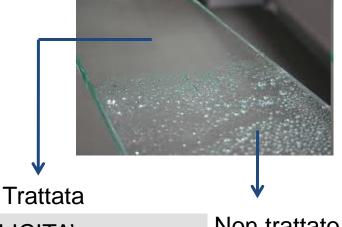
Vantaggi competitivi

- o La contaminazione di sporco e inquinanti è ridotta o impedita
- Pregio estetico salvaguardato nel tempo
- o Riduzione o eliminazione della formazione di ghiaccio e brina
- Risparmio di tempo, risorse umane e agenti chimici per la pulizia
- Ridotto impatto ambientale
- Know how consolidato
- Estensione della tecnologia a diverse tipologie di materiali
- Macchine industriali necessarie al trattamento disponibili in commercio e a basso costo

ISTEC KNOW-HOW

Sintesi di rivestimenti fotocatalitici a base di TiO₂ nanostrutturato

AUTOPULENTI e SUPERIDROFILICHE

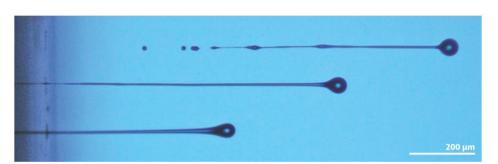


AUTOPULENZA

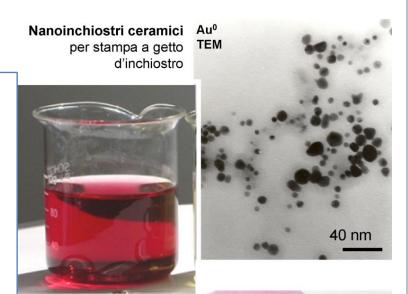
APPLICAZIONI

ceramica, vetro, alluminio, cemento, graniti, marmi, intonaci, laminati, ecc.

SUPERIDROFILICITA'

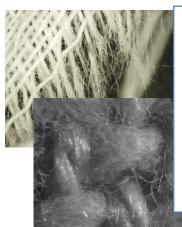

Non trattato

INCHIOSTRI/TECNOLOGIA DI DECORAZIONE DIGITALE

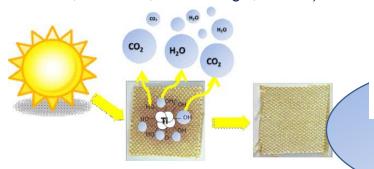

Responsabile scientifico: Dr **Michele Dondi** michele.dondi@istec.cnr.it

ISTEC KNOW-HOW

- Controllo della stabilità colloidale
- Controllo delle proprietà fluidodinamiche responsabili della stampabilità
- 3. Controllo dell'adesione e stabilità dell'inchiostro trasferito al substrato


Martin GD, Hoath SD, Hutchings IM, J. Phys. Conf. Ser., 105, 012001 (2008)

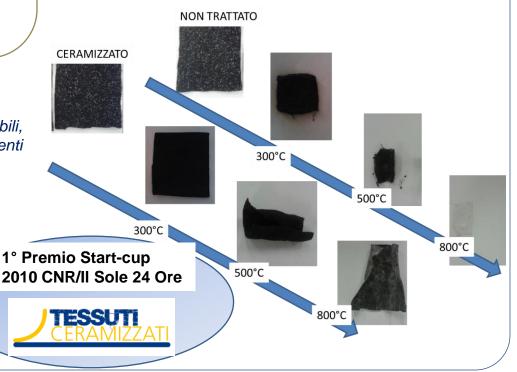
TESSILI CERAMIZZATI


ISTEC KNOW-HOW

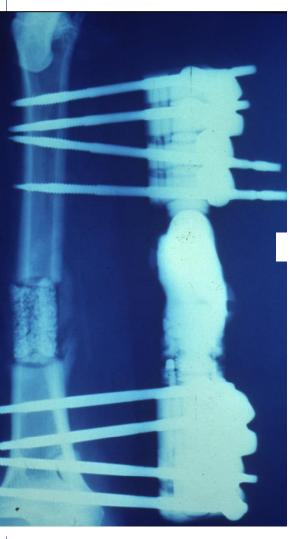
Immobilizzazione di nanoparticelle inorganiche (NPs) in supporti tessili al fine di ottenere materiali compositi organici-inorganici che uniscono le proprietà dei tradizionali materiali ceramici e tessili.

MEZZI MULTIFUNZIONALI ALTAMENTE VERSATILI

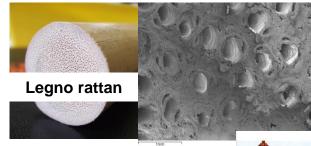
Dispositivi catalitici, facilmente separabili, recuperabili, durevoli, nell'ambito della «clean tecnology» (trattamenti ambientali, filtrazione, biotecnologia, sensori)



Responsabile scientifico: Dr **Anna Luisa Costa** anna.costa@istec.cnr.it


APPLICAZIONI

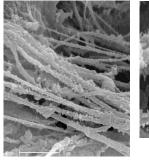
TESSILI ALTAMENTE PERFORMANTI

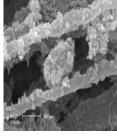

Rivestimenti protettivi con azione ritardante di fiamma, anti-usura, proprietà idrofile / idrofobiche, possono essere sfruttati per la produzione di **Tessuto Tecnico** altamente resistente.

BIOCERAMICI / MEDICINA RIGENERATIVA

✓ Riproduzione DELLA STRUTTURA DELL'OSSO a partire dal legno

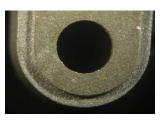
✓ Idrossiapatite biomorfa


Time 2009


The 50 Best Inventions Of the Year

✓ Sostituto osseo con porprietà magnetiche

✓ Biomineralizzazione


Osso umano

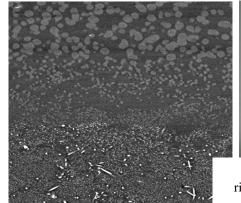
CERAMICI BIOSTRUTTURALI DI NUOVA GENERAZIONE

√ Viti e mini-sistemi di fissaggio

1 cm

✓ Protesi di pollice

✓ Protesi di ginocchio



Lavorati per elettro-erosione (EDM), rugosità media $R_a = 2.0 \,\mu\text{m}$

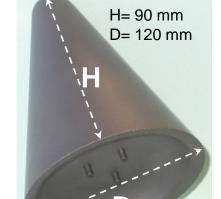
✓Bio-funzionalizzazione disuperfici con biovetri

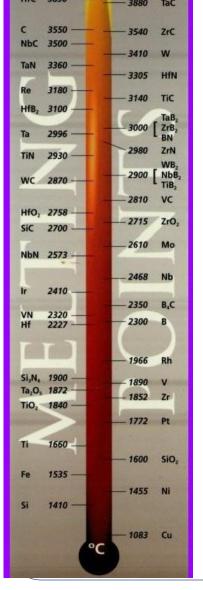
Non ricoperto

Coperto con vetro

CERAMICI (UHTC) PER AEREOSPAZIO

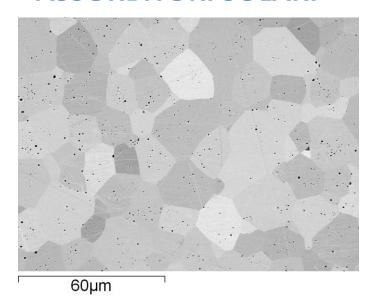
APPLICAZIONI IN AMBIENTI ESTREMI

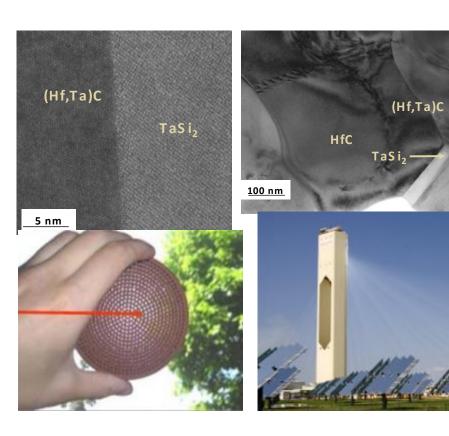

✓ Porta campioni ceramici per la Missione BION_M1 (esperimento METEORIT)



✓ Prototipo di cono di prua

✓ Prototipo di bordo alare



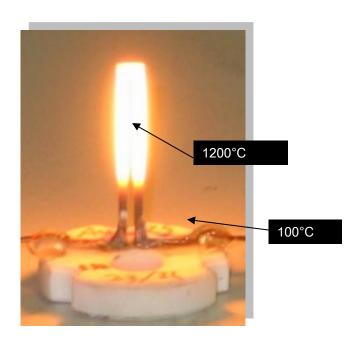

CERAMICI ULTRAREFRATTARI

ZrB₂, HfB₂, ZrC, HfC, TaC CON PUNTI DI FUSIONE ESTREMAMENTE ELEVATI, ALTA CONDUCIBILITA' TERMICA E ELETTRICA, STABILITA' A t > 1600° IN AMBIENTI SEVER

ASSORBITORI SOLARI

PER SISTEMI CSP: concentrated solar power (CSP)

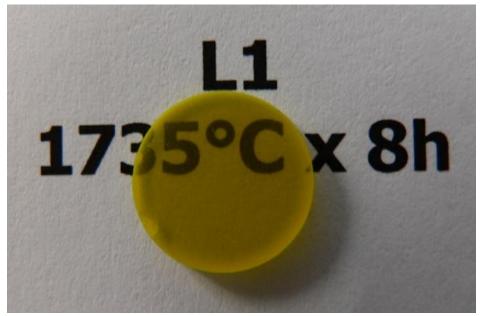
CERAMICI STRUTTURALI ELETTROCONDUTTIVI


parti antiusura - utensili da taglio - barriere termiche - componenti per alta T - componenti per turbine

✓ CERAMICI ELETTROCONDUTTIVI

MANUFATTI REALIZZATI
PER
ELETTROEROSIONE
(EDM)

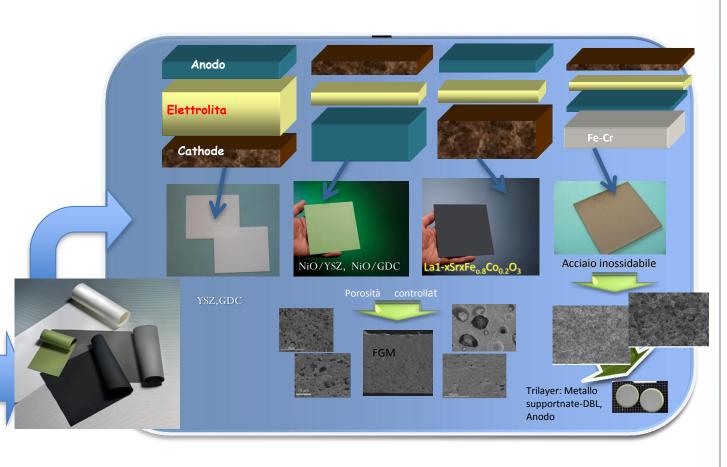
✓ RISCALDATORI / ACCENDITORI



CERAMICI TRASPARENTI

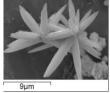
✓ Laser allo stato solido.
 Nd e Yb sono gli ioni attivatori più usati

✓ Ce:YAG in sostituzione della matrice siliconica nei LED per aumentarne le prestazioni

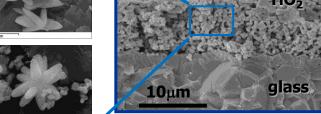

CELLE A COMBUSTIBILE SOFC

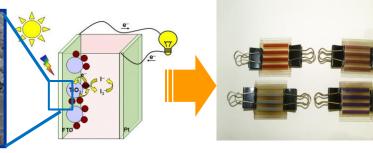
✓Impianto di colaggio su nastro pre competitivo

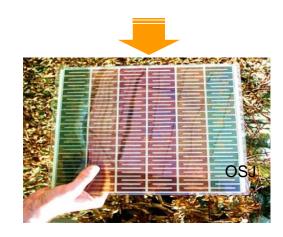
(spessori: 50-1200 μm)



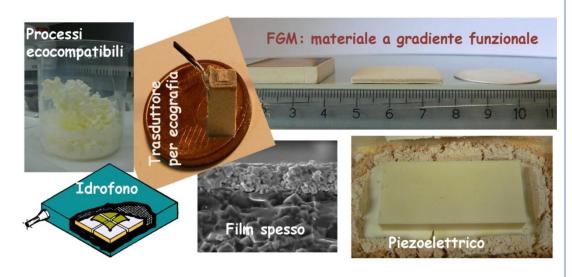
✓ Generazione di SOFC considerate


CELLE SOLARI DI TERZA GENERAZIONE / DSCC


✓ Celle solari basate sui principi di fotoelettrochimica

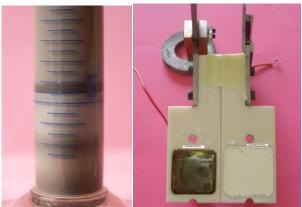


√ Fotosintesi artificiale



CERAMICI PIEZOELETTRICI


✓ Sistemi per recupero di energia (Energy Harvesting)


✓ Attuatori, trasduttori, trasformatori, sensori

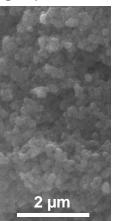
✓ Compositi multiferroici

Processo colloidale

✓ EPD-Deposizione elettroforetica di film spessi

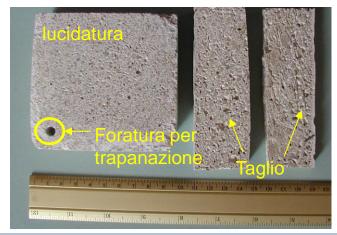
GEOPOLIMERI

✓ Pannelli per isolamento acustico e termico



✓ Pannelli per isolamento termico

Recupero di scarti industriali (80%)


✓ Microstruttura geopolimerica

✓ Vernice refrattaria di SiC

✓ Pannelli compositi con vermiculite espansa: resistenza alla flessione 3 MPa

MATERIALI PER BENI CULTURALI

SCULTURE IN MAIOLICA:
APPLICAZIONE DI
METODOLOGIE INTEGRATE
DI ANALISI E RESTAURO

DECORAZIONI IN TERRACOTTA: STUDIO DEL MATERIALE; DELLE TECNOLOGIE; DELLA CONSERVAZIONE E DEL RESTAURO

CARATTERIZZAZIONE E
CONSERVAZIONE DEI MATERIALI
NEGLI EDIFICI STORICI

anna.costa@istec.cnr.it