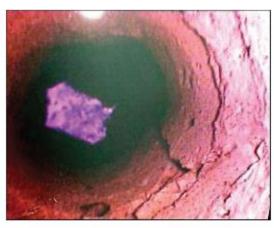

TRASMITTANZA PARETI OPACHE



TRASMITTANZA PARETI OPACHE

	METODO DI VALUTAZIONE	STRUMENTI NECESSARI	costo	TEMPI NECESSARI	SOGGETTI INTERESSATI	AFFIDABILITA' DELLE VALUTAZIONI
1	Calcolo EN ISO 6946	Foglio di calcolo e Banca dati delle caratteristiche dei materiali	Basso	Ridotti		
1.1	Reperimento dei dati tramite ABACHI o raccomandazioni CTI	Raccomandazioni CTI o Abaco Regionale, provinciale, comunale delle strutture	Basso	Ridotti	Propietario	Molto bassa Abaco= progetto= costruito?
1.2	Reperimento dei dati tramite materiale cartaceo del progetto	Documentazione tecnica relativa alla concessione edilizia o al rogito o alla relazione impianti	Basso	Mediamente Lunghi	Propietario Ufficio Tecnico Comunale	Bassa Progetto = costruito?
1.3	Reperimento dei dati con sopralluogo e foratura parete	Endoscopio	Molto elevato	Ridotti	Propietario e inquilino	Media Esperienza del professionista
1.4	Reperimento dei dati con sopralluogo e foratura parete	Carotaggio	Basso	Ridotti	Proprietario e inquilino	Buona
2	Misura in opera ISO 9869	Termoflussimetri – acquisitora dati, termocoppie	Medio	Ridotti	Inquilino	Ottima

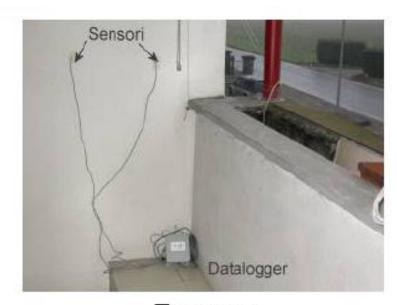
ENDOSCOPIO

Valutazione della stratigrafia con ENDOSCOPIO

> Calcolo di U con ISO 6946

- Valutazione invasiva eseguita su una parete significativa, rappresentante la tipologia del sistema di chiusura
- Esperienza da parte dell' esaminatore
- Costo elevato dello strumento

ENDOSCOPIO/CAROTAGGIO


Metodi invasivi e distruttivi

Misura in opera con termoflussimetro e sonde di temperatura (norma ISO 9869)

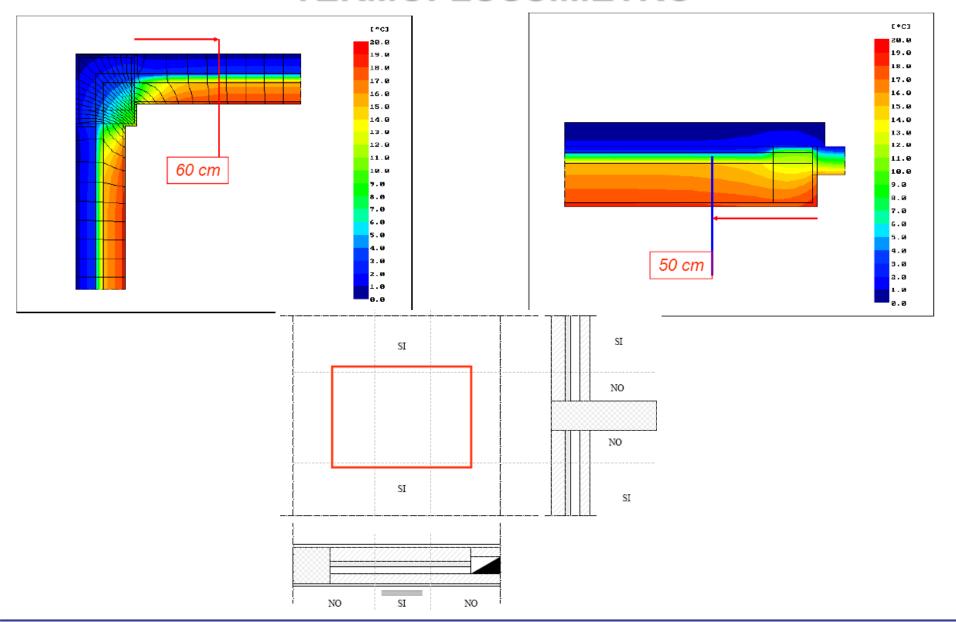
Interno

Esterno

La procedura consiste nel monitorare per periodi sufficientemente lunghi:

- il flusso termico specifico attraverso la parete φ
- ➢ le temperature Ti e Te (se l'obiettivo è la determinazione della trasmittanza, U. Nel caso si voglia misurare la conduttanza, C, della parete si rileveranno, invece, le temperature superficiali Tsi e Tse). La forte non stazionarietà delle condizioni termiche esterne rende però la misura molto lunga (60-80 ore)

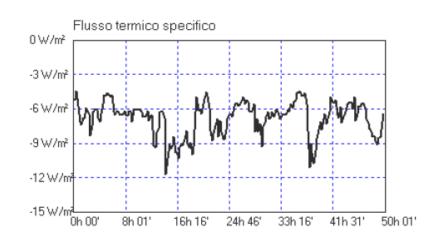
$$U = \frac{\overline{\phi}}{\overline{T_i} - \overline{T_e}} \qquad C = \frac{\overline{\phi}}{\overline{T_{si}} - \overline{T_{se}}}$$

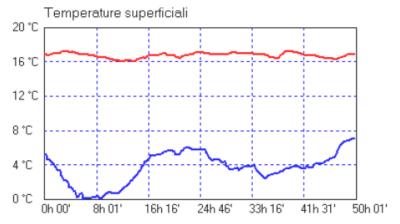

Occorre applicare i sensori in una porzione di superficie rappresentativa della "parete corrente" che si desidera caratterizzare. E' buona norma:

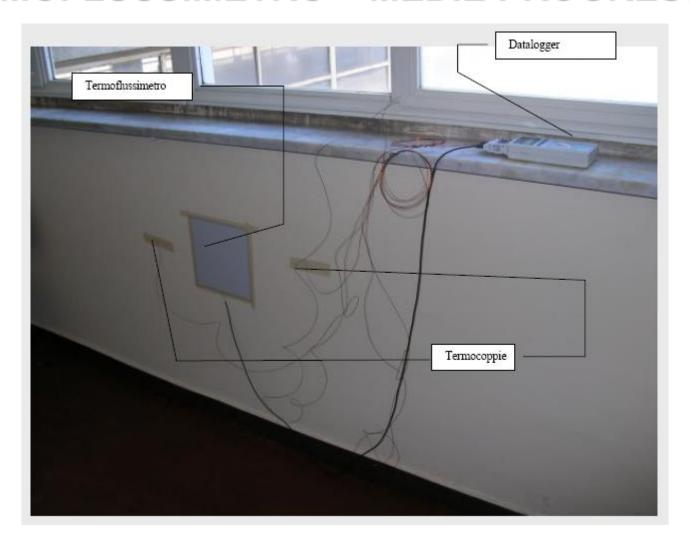
- posizionare il termoflussimetro sul lato interno, della parete (per minimizzare gli effetti di disturbo della radiazione solare e per mantenere il sensore in un ambiente meno "aggressivo"),
- rilevare la temperatura superficiale interna ed esterna in almeno due punti diversi ed assumere per l'analisi dei dati la media fra queste due letture (per minimizzare l'effetto di eventuali piccole disomogeneità nella struttura della parete).

Nella posa di tutti i sensori occorre curare la perfetta adesione del sensore con la parete (dove possibile è raccomandabile l'impiego di "paste termiche" per ridurre la resistenza termica di contatto).

E' necessario <u>evitare</u> che i sensori siano investiti direttamente dalla radiazione solare (il diverso comportamento ottico rispetto alla superficie della parete, infatti, indurrebbe sensibili errori di misura).

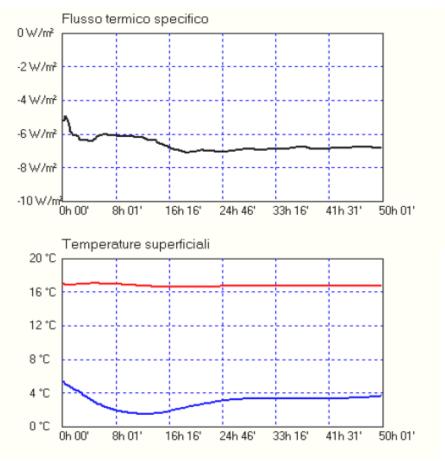

Al fine di minimizzare gli errori di misura è buona norma effettuare la sperimentazione durante una stagione in cui vi siano forti differenze di temperatura fra ambiente interno ed esterno.

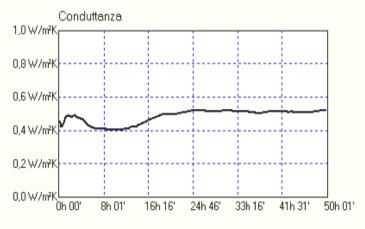



Parete edificio 1982 Milano

Nr. misurazioni = 201 Passo temporale = 15 min Tempo di misura = 2.1 giorni


Risultati istantanei di flusso termico specifico e della temperatura superficiale esterna e interna





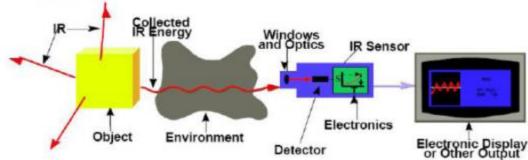
Conduttanza istantanea non restituisce valori affidabili

Metodo delle medie progressive

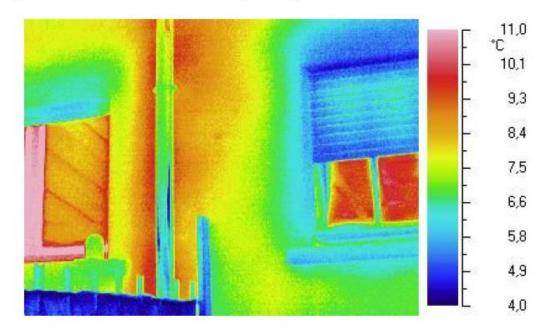
Valutazione:

U = 0.522 W/mqK

La termografia sfrutta la proprietà di tutti i corpi con temperatura superiore allo zero assoluto (-273,16 °C) di emettere energia sotto forma di radiazioni elettromagnetiche


Tali radiazioni vengono ricevute da un sensore che, attraverso una elaborazione, permette di risalire alla temperatura superficiale del corpo.

Le termocamere hanno sensori che rilevano 19.200 (160x120), 76.800 (320x240) o 307.200 (640x480) punti di misura, che si trasformano in pixel di una immagine radiometrica, permettendo quindi di ricavare la mappa termica della struttura ripresa.



La telecamera termografica a infrarossi (o termocamera) rileva tali frequenze ed assegna un colore ad ogni temperatura, tramite l'elaborazione e la conversione di un segnale elettronico.

In realtà essa non misura propriamente la temperatura **T** bensì la intensità di radiazione **I** emessa dal corpo.

Questa mappa termica viene rappresentata mediante una immagine detta "a falsi colori", in quanto ogni gradazione di colore rappresenta convenzionalmente un valore di temperatura secondo una scala riportata a margine dell'immagine stessa; il risultato è una vera e propria immagine termica del corpo ripreso.

Poiché la radiazione è una funzione della temperatura superficiale degli oggetti, è possibile per la fotocamera calcolare e visualizzare questa temperatura.

Tuttavia, la *radiazione rilevata* dalla telecamera non è unicamente dipendente dalla temperatura degli oggetti, ma è anche determinata dall'emissività. Inoltre, anche la radiazione originata dall'ambiente circostante viene riflessa sull'oggetto. Entrambe le radiazioni sono influenzate dall'assorbimento da parte dell'atmosfera. Per misurare accuratamente la temperatura è quindi necessario compensare gli effetti di un certo numero di sorgenti. Pertanto nella misura della temperatura assoluta sono da considerare molteplici parametri quali:

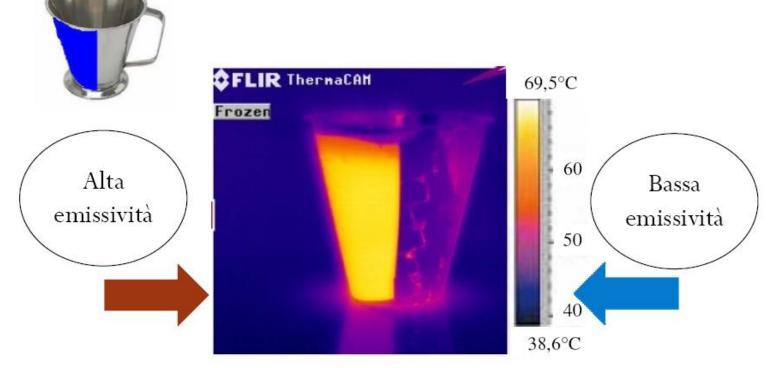
- ✓ emissività della superficie misurata
- ✓ riflessioni delle superfici circostanti
- ✓ angolo di misura
- ✓ umidità relativa e temperatura ambiente

In particolare l'emissività dipende da:

- ✓ Materiale: differente materiale = differente emissività
- ✓ Struttura della superficie: liscia, lucida, ruvida, opaca, etc.
- ✓ Geometria: forma, fori, angoli, cavità, etc.

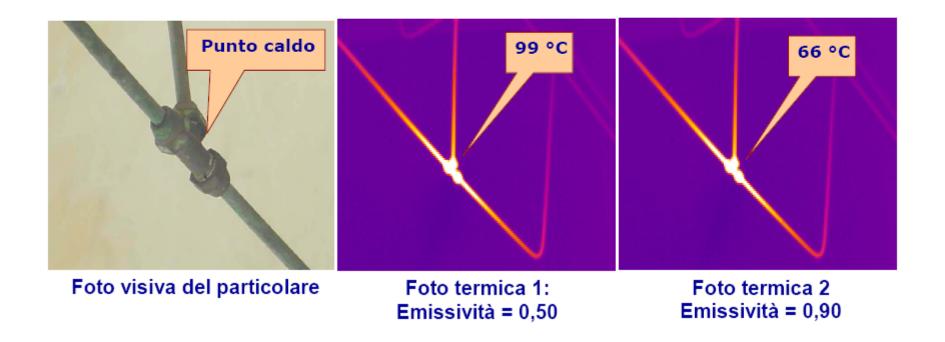
Non metalli (plastica, legno, ceramica, gomma)

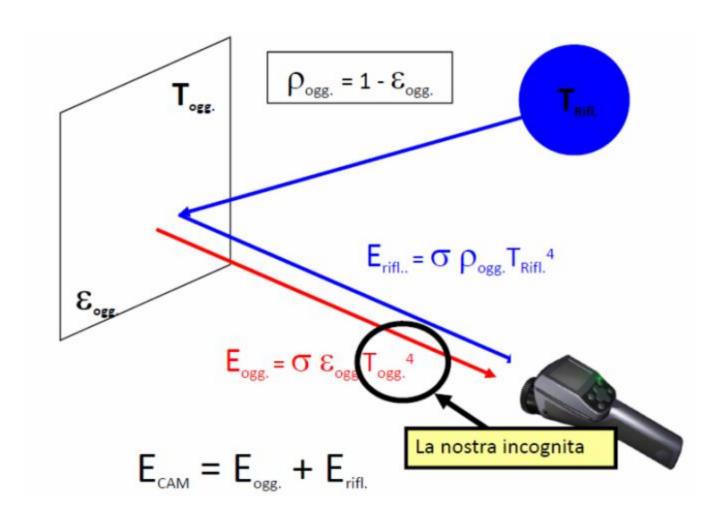
Normalmente hanno un elevato fattore di emissività (0,80 - 0,95) Normalmente hanno piccole variazioni tra i differenti campioni Normalmente hanno piccole variazioni nel tempo


Metalli (rame, alluminio, ferro, stagno)

Metalli puri, rettificati, non ossidati hanno valori molto bassi, fino a 0.05 Metalli fortemente ossidati hanno un alto valore di emissività, 0.95 Quindi, l'emissività superficiale varia tra questi valori in funzione del grado di ossidazione della superficie in oggetto

Tutti gli altri fattori (struttura della superficie, geometria, etc.)


Tazza inox riempita di acqua bollente

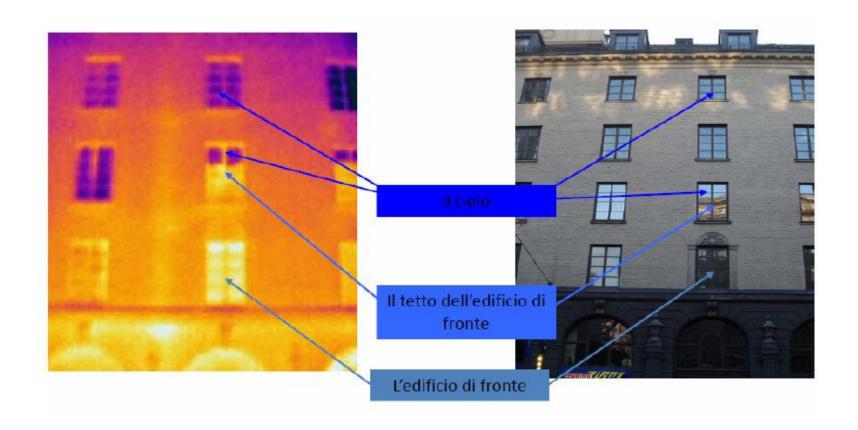

La differenza di temperatura tra la parte destra e sinistra dell'oggetto è solo apparente. In realtà solo l'emissività cambia

Metalli e loro ossidi		Temp °C	Emissività	
Alluminio	Foglio di alluminio	20	0.04	
	Patinato (per esposizione all'aria)	20	0.83-0.94	
Rame	Lucidato	100	0.05	
	Molto ossidato	20	0.78	
	Stampo ossidato	100	0.64	
	Foglio, molto arrugginito	20	0.69-0.96	
Nichel	Placcato, lucidato	20	0.05	
Acciaio inossidabile (tipo 18-8)	Lucidato	20	0.16	
	Ossidato	60	0.85	
Acciaio	Lucidato	100	0.07	
	Ossidato	200	0.79	
Altri materiali		Temp °C	Emissività į	
Mattone	Rosso comune	20	0.93	
Fuliggine		20	0.95	
Calcestruzzo	Asciutto	35	0.95	
Vetro	Trasparente	35	0.97	
Olio	Lubrificante	17	0.87	
	Spessore 0.03 mm	20	0.27	
	Spessore 0.13 mm	20	0.72	
	Strato spesso	20	0.82	
Vernice, olio	Media di 16 colori	20	0.94	
Carta	Bianca	20	0.07-0.90	
Intonaco		20	0.86-0.90	
Gomma	Nero 5	20	0.95	
Pelle	Umana	32	0.98	
Suolo	Asciutto	20	0.92	
	Saturo d'acqua	20	0.95	
Acqua	Distillata	20	0.96	
	Cristalli di ghiaccio	-10	0.98	
	Neve	-10	0.85	
Legno	Quercia piallata	20	0.90	

Notare le conseguenze sulla misura di temperatura dello stesso oggetto ripreso con due immagini termiche che, a parità di tutte le altre impostazioni (temp. riflessa, obiettivo, distanza ecc), hanno un diverso valore impostato di emissività.

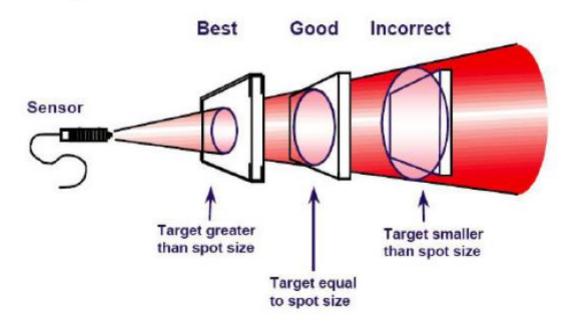
Correlazione tra emissione e riflessione

- Gli oggetti di misura con emissività elevata (ε≥0,8):
 - hanno un fattore basso di riflessione (ρ): ρ = 1 ε.
 - La loro temperatura può essere misurata molto facilmente con la termocamera.


Correlazione tra emissione e riflessione

- Gli oggetti di misura con emissività media (0,8 < ε < 0,6):
 - hanno un fattore medio di riflessione (ρ): ρ = 1 ε.
 - la loro temperatura può essere misurata con la termocamera.

Correlazione tra emissione e riflessione


- Gli oggetti di misura con emissività bassa (ε≤0,6)
 - hanno un fattore elevato di riflessione (ρ): ρ = 1 ε.
 - la loro temperatura può essere misurata con la termocamera, ma è fondamentale impostare correttamente la RTC

RTC = Compensazione della Temperatura Riflessa

Per una corretta misurazione la termocamera deve:

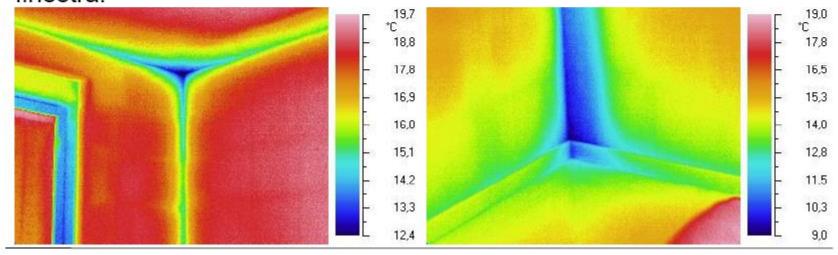
- ✓essere disposta ortogonalmente alla superficie di misura
- ✓inquadrare l'area di misura in modo da ridurre le influenze esterne, come riportato di seguito


Le condizioni di misura ideali sono:

- Condizioni atmosferiche stabili;
- Cielo nuvoloso prima e durante la misura (per misure all'aperto);
- Assenza di luce solare diretta prima e durante la misura;
- Assenza di precipitazioni;
- Superficie dell'oggetto di misura asciutta e priva di fonti termiche d'interferenza (es. assenza di foglie sulla superficie);
- Assenza di vento o correnti d'aria;

Per la termografia edile, si raccomanda una differenza di almeno 15 °C tra la temperatura esterna e quella interna.

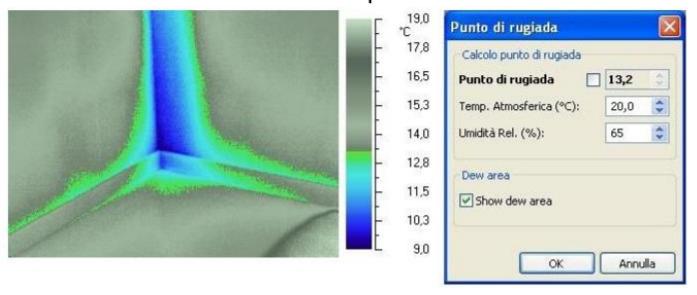
TERMOGRAFIA – PONTI TERMICI


Ad una rilevazione termografica eseguita in regime stazionario e con una differenza di temperatura significativa tra interno ed esterno il ponte termico appare come una area a temperatura superiore rispetto alla muratura corrente, e pertanto disperde una maggiore potenza in ambiente. Nelle figure qui sotto si vede un esempio evidente dove appaiono chiaramente i ponti termici relativi alla struttura in cemento armato ed alle solette.

TERMOGRAFIA – PONTI TERMICI

Nelle stesse condizioni al contorno (interno caldo ed esterno freddo, in situazione "stazionaria") il ponte termico rilevato dall'interno appare invece come un'area a temperatura inferiore rispetto alla zona circostante.

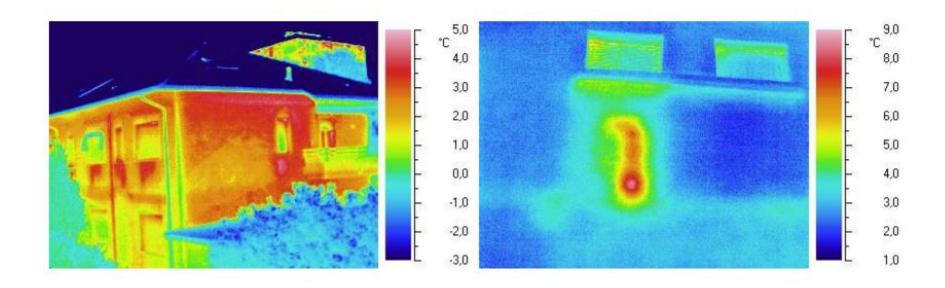
Le figure qui sotto mostrano, dall'interno di un edificio, i ponti termici all'intersezione tra muri e soletta/soffitto; nella figura a sinistra si può vedere, anche se solo parzialmente, il ponte termico di contorno della finestra.



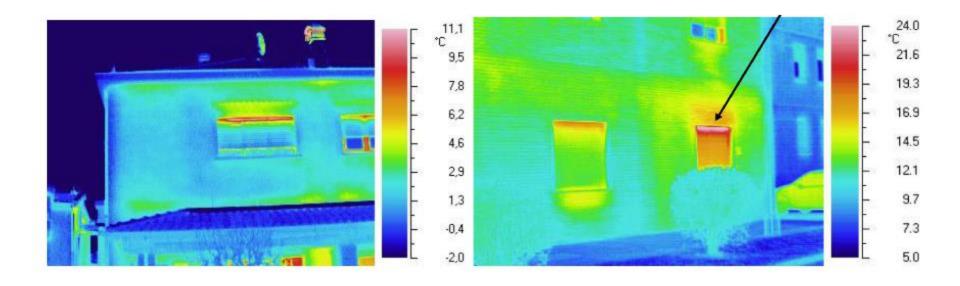
TERMOGRAFIA – PONTI TERMICI

Il ponte termico può diventare zona di condensazione di umidità all'interno dell'unità immobiliare se la sua temperatura superficiale scende sotto il valore di saturazione dell'aria nell'ambiente.

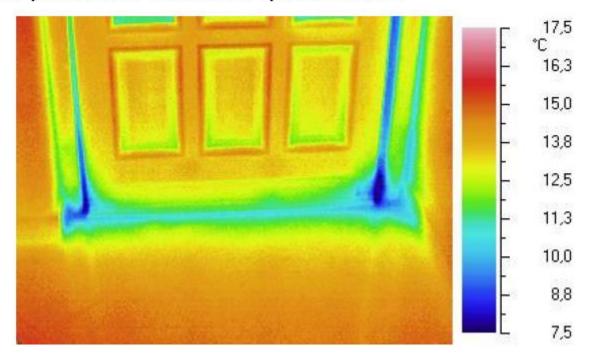
Nell'immagine qui sotto si è operata una separazione tra le aree a temperatura superiore a quella di saturazione (zona grigia) e quelle a temperatura inferiore ove invece si ha la possibilità di formazione di


condensa.

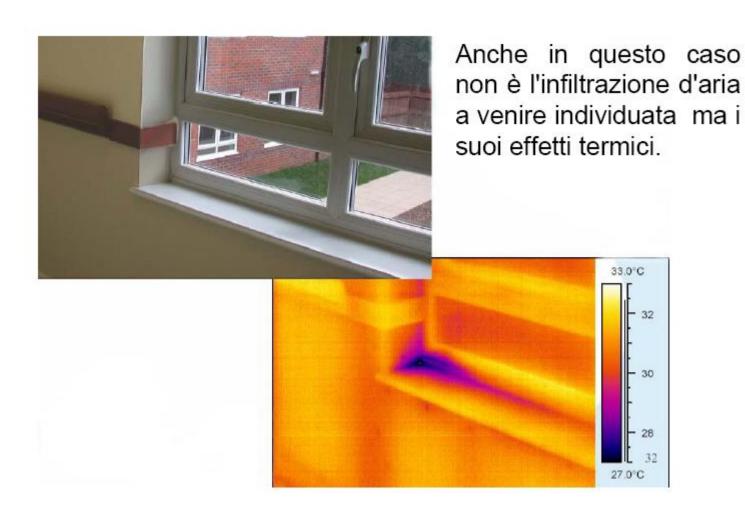
TERMOGRAFIA – IRREGOLARITA' ISOLAMENTO


Oltre ai ponti termici si possono individuare altri punti che causano un aumento delle dispersioni energetiche verso l'ambiente.

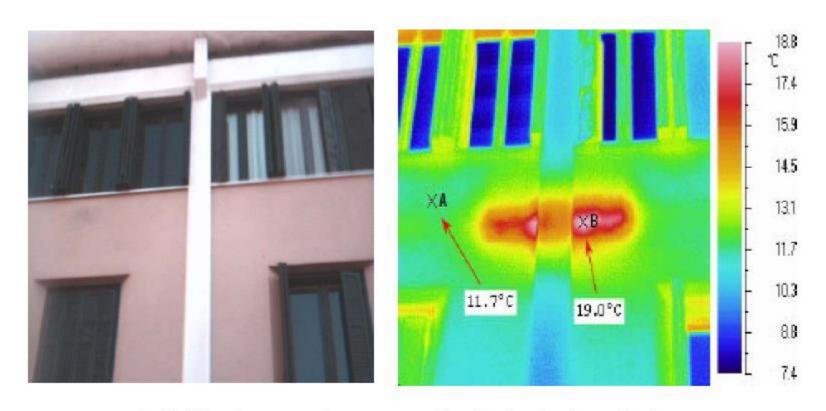
Nelle figure qui sotto si possono chiaramente rilevare le dispersioni dovute ai radiatori installati in corrispondenza delle pareti sottofinestra.


TERMOGRAFIA – IRREGOLARITA' ISOLAMENTO

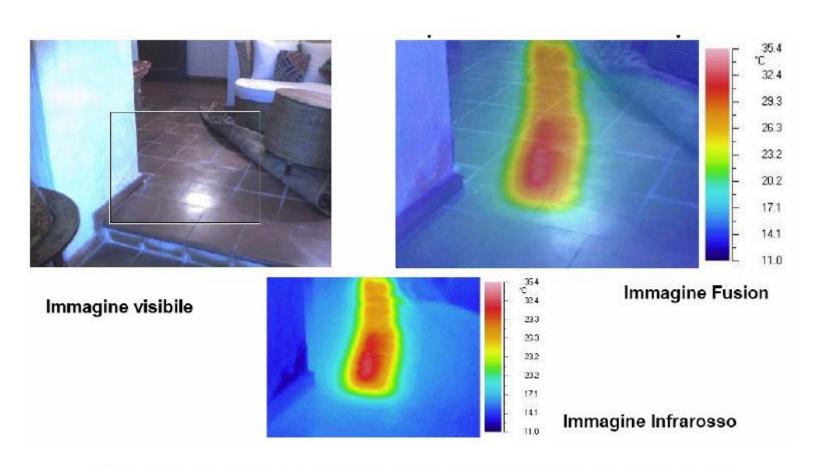
In queste immagini sono chiaramente visibili sopra le finestre zone non correttamente isolate, con flussi di calore attraverso i cassonetti e le solette.



TERMOGRAFIA – INFILTRAZIONE D'ARIA

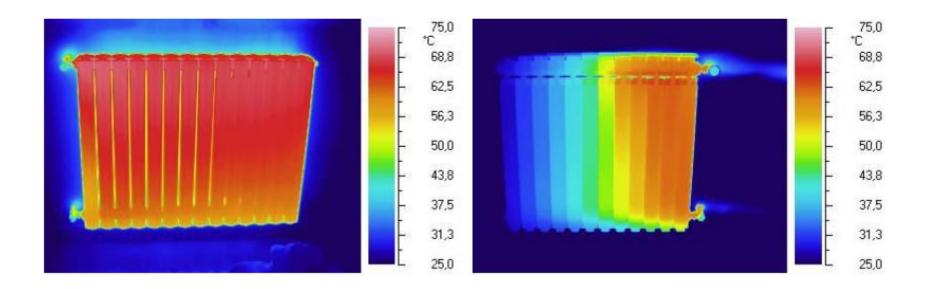

Le infiltrazioni di aria dai serramenti ed infissi non sono visibili direttamente, in quanto l'aria è trasparente agli infrarossi, ma indirettamente mediante il loro effetto di raffreddamento delle superfici lambite, come possiamo vedere in questo caso.

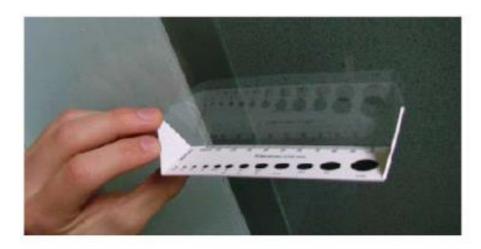
TERMOGRAFIA – INFILTRAZIONE D'ARIA



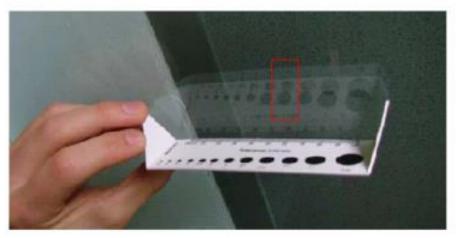
TERMOGRAFIA – TUBAZIONI NON ISOLATE

Individuazione tramite termografia di tubazioni non isolate.

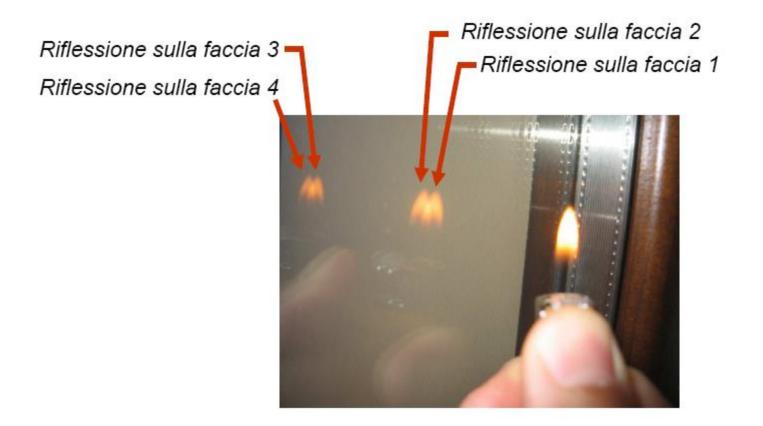

TERMOGRAFIA – VERIFICHE SU IMPIANTI


Individuazione tramite termografia di una micro perdita nel pavimento.

TERMOGRAFIA – VERIFICHE SU IMPIANTI


Nelle figure qui riportate sono rispettivamente rappresentati un radiatore con funzionamento regolare ed uno con un malfunzionamento che ne compromette l'efficienza; le due immagini sono riprodotte con la medesima scala di temperatura, e pertanto sono direttamente confrontabili.

FINESTRE



Misuratore dello spessore della lastra

Spessore della lastra = Dove si incontrano i due cerchi riflessi

FINESTRE

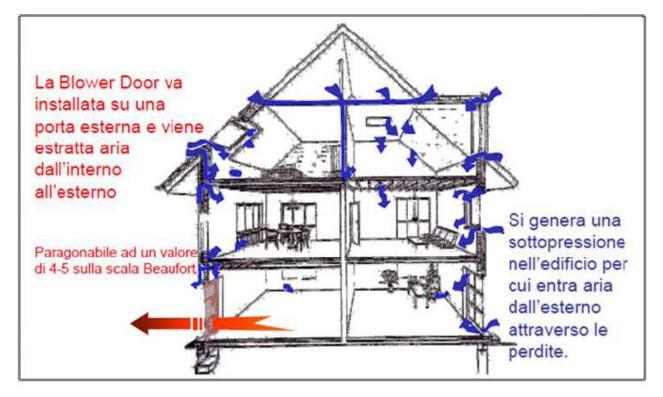
Il **BLOWER DOOR** è un sistema per la verifica della permeabilità all'aria di edifici residenziali, terziari ed industriali di qualsiasi dimensione.

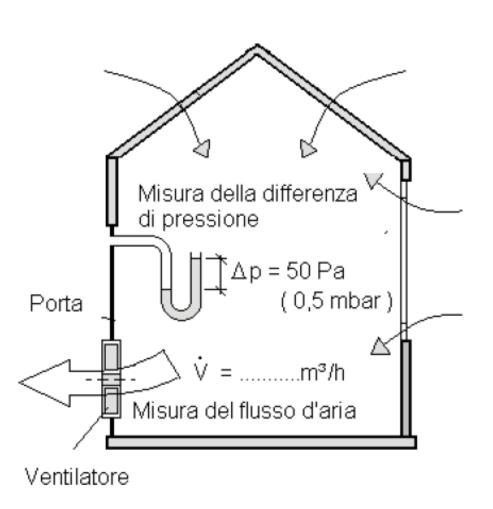
Il BLOWER (ventilatore) DOOR (porta) è detto anche porta ventilante.

In pratica è un grande ventilatore calibrato a controllo elettronico che viene montato temporaneamente (e tipicamente) sulla porta d'ingresso principale dell'edificio, attraverso una pannello che si adatta alle misure della porta e la sigilla perfettamente.

La norma **UNI EN ISO 13829** lo definisce come il metodo di pressurizzazione mediante ventilatore finalizzato alla **determinazione della permeabilità** dell'involucro edilizio o di parti di edificio.

metodo A

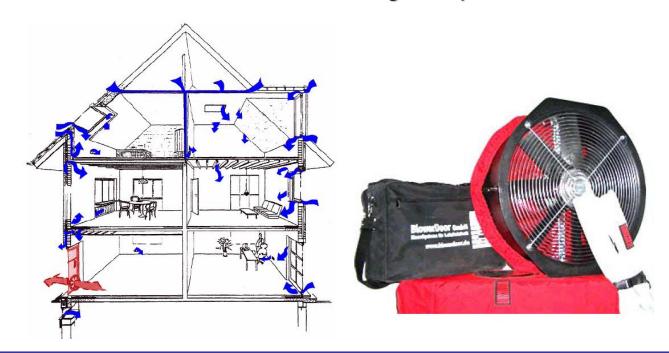

controllo dell'edificio nello stato finale (casa abitata)


metodo B

controllo dell'edificio durante i lavori di costruzione

Per la verifica delle infiltrazioni di aria, il **BLOWER DOOR** usa misurare la pressione interna ed esterna all'edificio (che deve essere completamente sigillato) ed il flusso d'aria generato

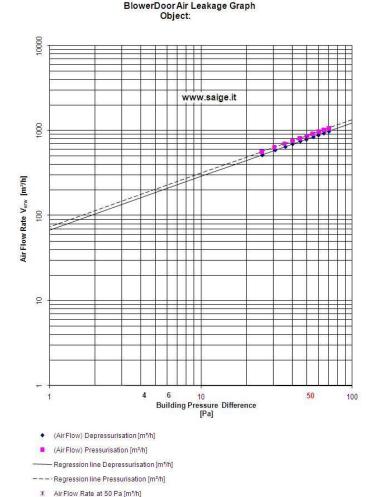
dal ventilatore.



Una volta che il ventilatore (aspirando o insufflando aria all'edificio) ha raggiunto una determinata differenza di pressione tra interno ed esterno (tipicamente 50 Pa), è possibile cercare le eventuali infiltrazioni d'aria da infissi, crepe, canalizzazioni, ecc., usando macchina termografica, termoanemometro generatore di fumo.

Nella seconda fase viene creata una depressione crescente, si parte da valori pari a circa 10, 30 Pa e si prosegue a passi di 5, 10 Pa sino a raggiungere un valore finale di 60,100 Pa. Per ogni passo verra' registrato e protocollato il flusso di volume d'aria.

Nella terza fase viene creata una sovrapressione (= depressione invertendo i lati) e le medesime misurazioni fatte nella fase 2 vengono ripetute.



Al termine del blower door test si ha un grafico con un diagramma di regressione fra le differenze di pressioni (in ascissa) e la portata d'aria, sia con edificio in pressione positiva rispetto all'esterno (linea con quadrati viola) che con pressione negativa (linea con rombi blu).

$$n_{50} = V_{50}/V (h^{-1})$$

Portata di rinnovo dell'aria alla differenza di pressione di riferimento (50 Pa):

 V_{50} = portata media di aria di infiltrazione a 50 Pa (m³/h) V = volume interno (m³)

• n₅₀ < 0,6 l/h Ottima permeabilità all'aria dell'involucro dell'edificio:

L'edificio o l'abitazione soddisfa i requisiti di permeabilità all'aria imposti dalla normativa sulle case passive.

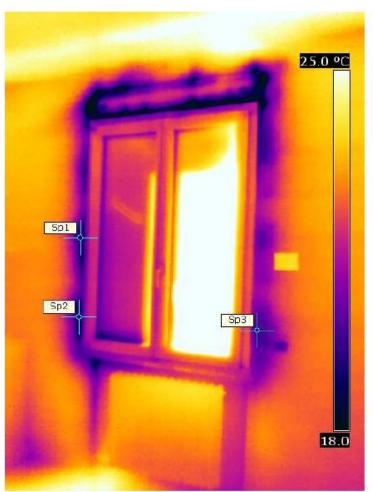
n₅₀ < 1,0 l/h
Permeabilità all'aria molto elevata dell'involucro dell'edificio:

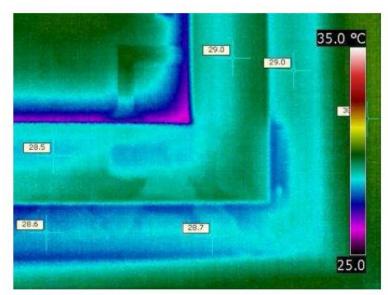
L'edificio o l'abitazione rispetta le prescrizioni della Direttiva DINV 4108-7 per l'impiego di impianti di aerazioni meccanici. Questo valore di permeabilità deve essere ottenuto, con ventilazione attraverso la finestra, anche per gli edifici a basso consumo energetico e gli edifici esposti al vento. In caso di ventilazione attraverso la finestra, è necessario assicurare una sufficiente aerazione dell'ambiente.

• 1.0 l/h < n₅₀ < 2.0 l/h Permeabilità all'aria medio - alta dell'involucro dell'edificio

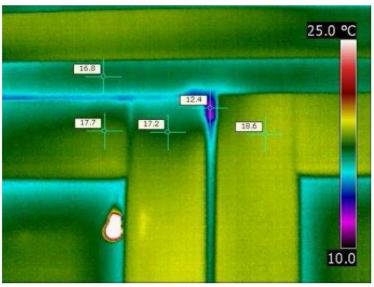
L'edificio o l'abitazione rispetta le prescrizioni della Direttiva DIN V 4108-7 per l'aerazione naturale, ad esempio attraverso le finestre. In caso di impiego di impianti di aerazione meccanici, secondo questa direttiva non deve essere superata una permeabilità all'aria n₅₀ in base al volume di 1,0 all'ora.

2,0 l/h < n₅₀ < 4,0 l/h
Permeabilità all'aria medio - bassa dell'involucro dell'edificio


Le perdite di entità medio - elevate citate nel verbale di collaudo devono essere sigillate. Secondo la Direttiva DINV 4108-7 per l'aerazione naturale, ad esempio attraverso le finestre, non deve essere superata una permeabilità all'aria n_{50} in base al volume di 3,0 all'ora.


• 4,0 l/h < n₅₀ Permeabilità all'aria insufficiente dell'involucro dell'edificio:

Si consiglia un'urgente risigillatura completa dell'edificio.


Tecnica termografica



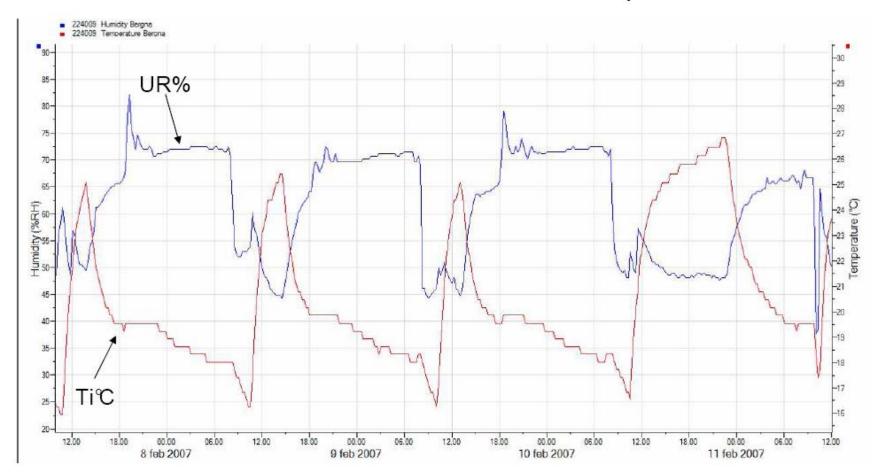
Omogeneità della distribuzione della temperatura del serramento: ∆Tmax tra telaio fisso e mobile = 0.2 C Assenza di infiltrazioni d'aria esterna (Tae = 10℃)

Disomogeneità della distribuzione della temperatura di un serramento che non chiude bene : ΔT tra telaio fisso e mobile = 5 $^{\circ}$ C Presenza di infiltrazioni d'aria esterna (Tae = 5 $^{\circ}$ C)

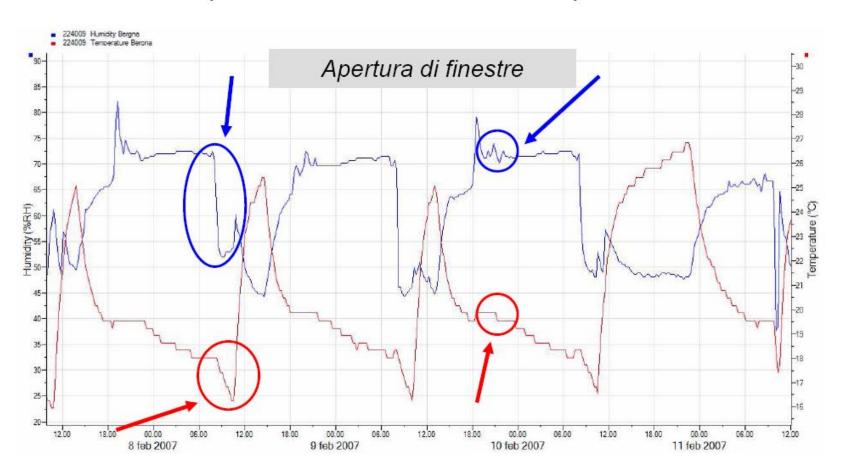
Generatore di nebbia

Visualizzazione dei flussi d'aria sugli elementi costruttivi con l'utilizzo del generatore di nebbia

COMPORTAMENTO DELL'UTENZA


- Si registrano temperatura dell'aria e umidità relativa interna ed esterna e si interpreta la gestione dell'ambiente in esame
- Valutazione del comportamento dell'utenza: ventilazione degli ambienti e accensione e spegnimento degli impianti

Termoigrometri registratori


COMPORTAMENTO DELL'UTENZA

Andamento di umidità relativa e temperatura

COMPORTAMENTO DELL'UTENZA

Comportamento dell'utenza: interpretazioni

VALIGETTA DEL CERTIFICATORE

strumenti	Ordine di grandezza
Misura in opera	3000 – 3500 €
Termoigrometri registratori	150 – 300 €
Termocamera	6000€
Misuratore di temperatura	50 – 150 €
Blower door test	5800 €
Anemometro	500€